Chemostatic modes of the ocean-atmosphere-sediment system through Phanerozoic time

نویسندگان

  • F. T. MACKENZIE
  • R. S. ARVIDSON
  • M. GUIDRY
چکیده

The essential state of the Phanerozoic ocean-atmosphere system with respect to major lithophile and organic components can be bounded by sedimentary observational data and relatively few model assumptions. The model assumptions are in turn sufficient to constrain and compute the remaining fluxes that result in a comprehensive model describing atmospheric and oceanic evolutionary history over the past 500 m.y. that is in accord with the sedimentary observational data. Two central themes emerge. First, there is a strong coupling of the state of various reservoirs throughout the entire system imposed mainly by negative physical, chemical and biological feedbacks. Second, there is a significant overprint of ‘physical’ processes, such as weathering, by biologically-mediated processes and ecosystem evolution. Ultimately, the Phanerozoic is characterized by two modes of seawater majorion chemistry, pH and carbonate saturation state, and atmospheric CO2. Importantly, the transition between these two modes may result from the previous state of the system whose impacts lag by tens of millions of years. Thus, the instantaneous state of the system at any given point in time may reflect in part the ‘memory’ of a previous period when fluxes and processes were not in balance. The modernday problem of ocean acidification mainly reflects the fact that human activities of fossil fuel burning and land use changes are resulting in geologically rapid releases of CO2 to the atmosphere and its absorption by the surface ocean and does not reflect the longer term processes and feedbacks that led to the acidic oceans of the past.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Phanerozoic record of global sea-level change.

We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 +/- 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-vo...

متن کامل

Analyzing the Propagation Behavior of a Gaussian Laser Beam through Seawater and Comparing with Atmosphere

Study of the beam propagation behavior through oceanic media is a challenging subject. In this paper, based on generalized Collins integral, the mean irradiance profile of Gaussian laser beam propagation through ocean is investigated. Power In Special Bucket (PIB) is calculated. Using analytical expressions and calculating seawater transmission, the effects of absorption and scattering on beam ...

متن کامل

Oceanic oxygenation events in the anoxic Ediacaran ocean.

The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising ...

متن کامل

Decadal variability and predictability in themidlatitude ocean { atmosphere

The coupled ocean{atmosphere interaction and predictability associated with the tropical El Ni~ no phenomenon has motivated researchers to seek analogous phenomena in the midlatitudes as well. Are there midlatitude coupled ocean{atmosphere modes? Is there signiicant predictability in the midlatitudes? The authors address these questions in the broader context of trying to understand the mechani...

متن کامل

LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR’s strengths is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009